تخطى إلى المحتوى

احتاج مساعده ضروري 2024.

السلام عليكم ورحمة الله وبركاته

انا عندي بحث عن البلاستك <<<لاكي

جمعت عنه معلومات حلوه بس المشكله انا ما اعرف اختصر الكلام

ابي اسويه عرض بور بونت

قدرت على بعضه والباقي ماعرفت لاكي

راح انزل المعلومات

وابي منكم اللي يقدر يختصر لي في كمشريحه

وابيها باسرع وقت

لاكي

ابيها على الاقل بكره الجمعه مخلصه <<<جايه في وقت بدل الضايع

بس وربي ماجيت الا لمى عجزت

Overview
Plastics can be classified by their chemical structure, namely the molecular units that make up the polymer’s backbone and side chains. Some important groups in these classifications are the acrylics, polyesters, silicones, polyurethanes, and halogenated plastics. Plastics can also be classified by the chemical process used in their synthesis, e.g. as condensation, polyaddition, cross-linking, etc.
Other classifications are based on qualities that are relevant for manufacturing or product design. Examples of such classes are the thermoplastic and thermoset, elastomer, structural, biodegradable, electrically conductive, etc. Plastics can also be ranked by various physical properties, such as density, tensile strength, glass transition temperature, resistance to various chemical products, etc.
Due to their relatively low cost, ease of manufacture, versatility, and imperviousness to water, plastics are used in an enormous and expanding range of products, from paper clips to spaceships. They have already displaced many traditional materials—such as wood, stone, horn and bone, leather, paper, metal, glass and ceramic—in most of their former uses.
The use of plastics is constrained chiefly by their organic chemistry, which seriously limits their hardness, density, and their ability to resist heat, organic solvents, oxidation, and ionizing radiation. In particular, most plastics will melt or decompose when heated to a few hundred celsius. While plastics can be made electrically conductive to some extent, they are still no match for metals like copper or aluminum. Plastics are still too expensive to replace wood, concrete and ceramic in bulky items like ordinary buildings, bridges, dams, pavement, railroad ties, etc.

هذا الجزء الاول
لاكي

Chemical structure
Common thermoplastics range from 20,000 to 500,000 in molecular mass, while thermosets are assumed to have infinite molecular weight. These chains are made up of many repeating molecular units, known as "repeat units", derived from "monomers"; each polymer chain will have several thousand repeat units. The vast majority of plastics are composed of polymers of carbon and hydrogen alone or with oxygen, nitrogen, chlorine or sulfur in the backbone. (Some of commercial interest are silicon based.) The backbone is that part of the chain on the main "path" linking a large number of repeat units together. To vary the properties of plastics, both the repeat unit with different molecular groups "hanging" or "pendant" from the backbone, (usually they are "hung" as part of the monomers before linking monomers together to form the polymer chain). This customization by repeat unit’s molecular structure has allowed plastics to become such an indispensable part of twenty first-century life by fine tuning the properties of the polymer.
Some plastics are partially crystalline and partially amorphous in molecular structure, giving them both a melting point (the temperature at which the attractive intermolecular forces are overcome) and one or more glass transitions (temperatures above which the extent of localized molecular flexibility is substantially increased). So-called semi-crystalline plastics include polyethylene, polypropylene, poly (vinyl chloride), polyamides (nylons), polyesters and some polyurethanes. Many plastics are completely amorphous, such as polystyrene and its copolymers, poly (methyl methacrylate), and all thermosets.

اتمنى ماتجي الجمعه ومكانه سر لاكي

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

هذا الموقع يستخدم Akismet للحدّ من التعليقات المزعجة والغير مرغوبة. تعرّف على كيفية معالجة بيانات تعليقك.